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Abstract— Shape assembly, the process of combining parts
into a complete whole, is a crucial robotic skill with broad real-
world applications. Among various assembly tasks, geometric
assembly—where broken parts are reassembled into their origi-
nal form (e.g., reconstructing a shattered bowl)—is particularly
challenging. This requires the robot to recognize geometric cues
for grasping, assembly, and subsequent bimanual collaborative
manipulation on varied fragments. In this paper, we exploit
the geometric generalization of point-level affordance, learn-
ing affordance aware of bimanual collaboration in geometric
assembly with long-horizon action sequences. To address the
evaluation ambiguity caused by geometry diversity of broken
parts, we introduce a real-world benchmark featuring geomet-
ric variety and global reproducibility. Extensive experiments
demonstrate the superiority of our approach over both previous
affordance-based and imitation-based methods. Project page:
https://sites.google.com/view/biassembly/.

I. INTRODUCTION

Shape assembly, the task of assembling individual parts
into a complete whole, is a critical skill for robots with wide-
ranging real-world applications. This task can be broadly
categorized into two main branches: furniture assembly [1],
[2], [3] and geometric assembly [4], [5], [6]. Furniture
assembly focuses on combining functional components, such
as chair legs and arms, into a fully constructed piece,
emphasizing both the functional role of each part and the
overall structural design. In contrast, geometric assembly
involves reconstructing broken objects, like piecing together
parts of a shattered mug, to restore their original form. While
furniture assembly has been relatively well-studied—ranging
from computer vision tasks that predict part poses in the
assembled object [1] to robotic systems that assemble parts in
both simulation [7], [8], [9] and real-world environments [2],
[10], [11]—geometric assembly remains under-explored de-
spite its significant potential for real-world applications [5],
[12], such as repairing broken household items, recon-
structing archaeological artifacts [13], assembling irregularly
shaped objects in industrial tasks, aligning bone fragments in
surgery [14], and reconstructing fossils in paleontology [15].

Previous works on geometric assembly primarily focused
on generating physically plausible broken parts through
precise physics simulations in the graphics domain [5], [16],
and estimating the target assembled part poses based on
observations in the computer vision domain [4], [6], [17].
These studies only consider the geometries and ideal assem-
bled poses of broken parts, dismissing the process of step-
by-step assembling parts to the complete shape. However,
different from opening a door or closing a drawer, only with
the ideal part poses, it is difficult for a robot to directly and
successfully manipulate broken parts to the complete shape.
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Fig. 1. (A) Direct learning long-horizon action trajectories of geometric
assembly may face many challenges: grasping ungraspable points, grasping
points not suitable for assembly (e.g., seams of fragments), robot colliding
with parts and the other robot. (B) We formulate this task into 3 steps:
pick-up, alignment and assembly. For assembly, we predict the direction
that will not result in part collisions. For alignment, we transformed any
assembled poses to poses easy for the robot to manipulate from the initial
poses without collisions. For pick-up, we learn point-level affordance aware
of graspness and the following 2 steps. (C) Real-World Evaluations with
affordance predictions on two mugs and the corresponding manipulation.

The challenges of the above robotic geometric shape
assembly task mainly come from the exceptionally large
observation and action spaces. For the observation space, the
broken parts have arbitrary geometries, and the graspness
on the object surface should consider not only the local
geometry itself, but also whether grasping on such point
can afford the subsequent bimanual assembly actions. For
the action space, as illustrated in Figure 1, it requires long-
horizon action trajectories. Given the contact-rich nature of
the task, where collisions among the two parts and two robots
will easily exist, the actions should be fine-grained and aware
of bimanual collaboration. Consequently, the policy must
account for geometry, contact-rich assembly processes, and
bimanual coordination.

We propose our BiAssemble framework for this challeng-
ing task. For geometric awareness, we utilize point-level
affordance, which is trained to focus on local geometry. This
approach has demonstrated strong geometric generalization
in diverse tasks [18], [19], including short-term bimanual
manipulation [20], such as pushing a box or lifting a basket.
To enhance the affordance model with an understanding
of subsequent long-horizon bimanual assembly actions, we
draw inspiration from how humans intuitively assemble frag-
ments: after picking up two fragments, we align them at the
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Fig. 2. Framework Overview. With the point cloud observation and
Imaginary Assembled Shape, the model predicts the disassembly direction
in which the disassembled part poses can be easily reached by manipulating
the raw parts under the guidance Bi-Affordance.

seam, deliberately leaving a gap (since directly placing them
in the target pose often causes geometric collisions), with
part poses denoted as alignment poses. We then gradually
move the fragments toward each other to fit them together
precisely. The alignment poses of the two fragments can
be obtained by disassembling assembled parts in opposite
directions. With this information, it becomes straightforward
to extend the geometry-aware affordance to further be aware
of whether the controller can move fragments into the
alignment poses without collisions.

We develop a simulation environment where robots can
be controlled to assemble broken parts. This simulation
environment bridges the gap between vision-based pose
prediction for broken parts and the real-world robotic geo-
metric assembly. Moreover, since broken parts exhibit varied
geometries (e.g., the same bowl falling from different heights
breaking into different groups of fragments), it is challenging
to fairly assess policy performance in real-world settings. To
address this, we further introduce a real-world benchmark
featuring globally available objects with reproducible broken
parts, along with their corresponding 3D meshes, which can
be integrated into simulation environment. This benchmark
enables consistent and fair evaluation of robotic geometric
assembly policies. Extensive experiments on diverse cate-
gories demonstrate the superiority of our method.

II. METHOD

A. Overview

Our BiAssembly framework is designed to predict collabo-
rative affordance and gripper actions for bimanual geometric
shape assembly. First, to propose the assembly direction on
two aligned parts, we develop the Disassembly Predictor
to learn the feasible disassembly directions in which the
opposite assembly direction will result in no collisions, based
on the fracture geometry of the imaginary assembled shape
in any pose (II-B). Next, we design the Transformation
Predictor, to transform disaasembled parts to poses where
the controller can successfully manipulate the initial parts to

these alignment poses (II-C). Based on the predicted part
alignment poses, we propose the BiAffordance Predictor,
which not only predicts where to grasp the fractured parts,
but also considers the subsequent collaborative alignment and
assembly steps (II-D).

B. Disassembly Prediction Based on Shape Geometry

Feasible disassembly directions (in which the disassembly
and opposite assembly processes will not result in collisions)
are determined by the fracture geometry of part pairs. We
predict these directions from an object-centric perspective on
the imaginary assembled shape S in any pose. Notably, these
disassembly directions exhibit SO(3) equivariance: they ro-
tate consistently with the parts, allowing separation of shape
geometry from pose [4]. To capture this property, we use VN-
DGCNN [4] to encode S and obtain an SO(3)-equivariant
feature fs. The Disassembly Predictor, implemented as a
conditional variational autoencoder (cVAE), conditions on
fs to model the distribution over disassembly directions.

C. Transformation Prediction For Alignment Pose

Given a collision-free disassembly direction, we predict
alignment poses that allow the robot to move parts from
initial poses to pre-assembly poses without collisions. This
is framed as predicting an SE(3) transformation M ∈ R4×4

applied to the assembled shape S and disassembly direction
v. PointNet++ encodes initial point cloud O into a global
feature fO, and an MLP encodes v into fv . A cVAE then
takes (fO, fv) and predicts M . Applying M to S and v yields
transformed S′ and v′ for alignment and assembly.

D. BiAffordance Predictor

The BiAffordance Predictor proposes bimanual grasps
during pick-up step, identifying easy-to-grasp regions while
avoiding seams and potential collisions in future alignment
and assembly. Following DualAfford [20], we decompose the
task into two conditional predictions: the first Affordance
and Actor Networks select a grasp point and orientation
for one gripper g1 = (p∗1, r1), and the second pair predicts
g2 = (p∗2, r2) conditioned on the first. Unlike prior work fo-
cused on short-term tasks, our model ensures grasps support
downstream alignment and assembly. PointNet++ encodes
the initial observation O and transformed shape S′, an
MLP encodes the transformed disassembly direction v′. The
Affordance Networks (MLP) predict per-point graspability,
and Actor Networks (cVAE) predict gripper orientations.

E. Alignment and Assembly Actions

After grasping parts, we predict gripper poses for align-
ment galigni and assembly gasmi . We assume gripper-object
relative pose remains constant throughout manipulation:
gpicki · qpicki = gasmi · qasmi ; g, q ∈ SE(3). This allows us to
compute gasmi using the known pick-up pose gpicki , where
qpicki is obtained via a pretrained model[21], and the target
part assembled pose is computed by applying the predicted
M to the initial pose, qasmi = M ·qiniti . The final gripper pose
gasmi is then given by: gasmi = gpicki ·qpicki ·(qiniti )

−1 ·M−1.



TABLE I
QUANTITATIVE RESULTS FOR NOVEL INSTANCES WITHIN TRAINING CATEGORIES AND FOR UNSEEN CATEGORIES.

Novel Instances in Training Categories Novel Categories

Method AVG AVG

ACT 2% 0% 0% 0% 1% 0% 0% 0% 0% 0% 0.30% 0% 1% 0% 0% 1% 0.4%
Heuristic 5% 8% 0% 3% 2% 4% 3% 5% 10% 2% 4.20% 1% 5% 2% 0% 14% 4.4%

SE(3)-Equiv 0% 0% 4% 0% 1% 5% 0% 7% 2% 11% 3.00% 4% 0% 2% 0% 2% 1.6%
DualAfford 21% 17% 0% 2% 2% 4% 14% 8% 10% 6% 8.40% 5% 10% 4% 1% 16% 7.2%

Ours 60% 38% 13% 13% 12% 9% 26% 18% 27% 25% 24.10% 14% 31% 10% 7% 25% 17.4%

Notably, this method avoids needing the absolute value of
qiniti , relying only on relative transformations. A similar
formulation applies to the alignment step, with an additional
offset v′ added to the transformation.
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Fig. 3. Part A illustrates the pipeline for scanning and reconstructing real
objects. Part B presents examples of fractured parts from various categories.

III. BENCHMARK

A. Simulation Benchmark
Constructing a large-scale dataset with real objects is time-

consuming and costly. To address this challenge, we use the
Breaking Bad Dataset [5], which captures natural object frag-
mentation across diverse categories and fracture patterns. For
physics simulation, we employ the SAPIEN [22] platform
along with two Franka Panda grippers as robot actuators.

B. Real-World Benchmark
We construct a real-world benchmark (Fig.3) to stan-

dardize evaluation and facilitate reproducibility. Objects are
placed on a turntable surrounded by 6 ArUco markers for
localization, and scanned using a smartphone camera from
top-down to level views. Around 300 frames are processed
by COLMAP[23], [24] for camera pose estimation. We use
Grounded SAM 2 [25], [26] and Depth Anything V2 [27]
to generate masks and monocular depth, and use SDFStu-
dio [28], [29] with depth ranking loss [30] to reconstruct
object mesh. Our dataset includes everyday objects (e.g.,
wine glasses, mugs, bowls, teapots) sourced from global
brands. Shapes vary in size, geometry, transparency, texture,
and seam structure to ensure diversity.

IV. EXPERIMENTS

A. Simulation and Settings
We use EverydayColorPieces subset of Breaking Bad

Dataset [5], with 15 categories, 445 shapes, and 11,820
fragment pairs. Shapes from 10 training categories are split
into seen and novel instances, and 5 categories are held out
to evaluate object- and category-level generalization.
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Fig. 4. Simulation and Real-World Experiments. We show qualitative
results of the predicted affordance maps and robot actions from our method.

B. Baselines

We compare with four baselines: (1) ACT [31]: a trans-
former model with action chunking for closed-loop imitation
of demonstrations; (2) Heuristic, a manually designed strat-
egy that improves manipulation success; (3) SE(3)-Equiv [4]:
which learns SE(3)-equivariant representations for pose esti-
mation in vision tasks; (4) DualAfford [20]: which predicts
collaborative affordance maps for bimanual manipulation.

C. Quantitative and Qualitative Results

Table I shows that our method consistently outperforms
baselines across both novel instance and unseen category
datasets, demonstrating strong generalization in robotic ge-
ometric assembly. Leveraging SE(3)-equivariant representa-
tions and disassembly-aware affordances, our model predicts
stable grasping actions optimized for alignment and assem-
bly. Figure 4 shows that the learned collaborative affordance
maps highlight geometry-aware grasp regions while avoiding
problematic areas such as fractured seams or table collisions.
Our model reliably completes multi-step manipulation tasks
across diverse and unseen shapes, validating its effectiveness
in long-horizon bimanual assembly scenarios.

D. Real-World Experiments

As shown in Fig.4 and Fig.1 (bottom), our method per-
forms well in real-world settings, accurately predicting grasp
regions while avoiding fractured seams and areas near the
table to reduce collisions.
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